Refine Your Search

Topic

Search Results

Journal Article

Effect of Vortex Generator on Flow Field Quality in 3/4 Open Jet Automotive Wind Tunnel

2017-03-28
2017-01-1530
Based on a 1:15 scaled 3/4 open jet automotive wind tunnel, this paper studies the effect of vortex generator on the buffeting phenomenon. The mean velocity, static pressure gradient, turbulent intensity as well as frequencies of fluctuant velocities have been explored experimentally with and without vortex generator. It shows that the less protruding vortex generator could control the buffeting phenomenon and improve the flow quality. Furthermore, the unsteady coherent structures in the jet shear layer have been visualized and analyzed by Detached-eddy simulation (DES). The vortex-ring pairing process is identified in the shear layer along with obvious frequency characteristics and velocity fluctuations. The vortex generator can postpone and restrain this vortex-ring pairing process, then reducing the velocity fluctuations.
Technical Paper

The Investigation of Self-Balanced Property and Vibration on the Particular Crankshaft System for an Opposed Piston Engine

2016-06-15
2016-01-1768
For an in-line diesel engine with four cylinder operating in four-stroke mode, the second-order reciprocating inertia forces generally cannot be well balanced with direct approach. The unbalanced second-order inertia forces are the main reason to cause vibration and noise in a diesel engine within low frequency range. The more superior tone quality for modern diesel engine has been expected even for bus application all the time, and there are tougher requirements for truck noise in developed countries, i.e. in Europe and USA. In present research a unique crankshaft system configuration was proposed, which including opposed piston, inner and outer connecting rod, and crankshaft but running in two-stroke mode, to eliminate the second-order inertia force considerably rather than by adding an extra balance shaft mechanism.
Technical Paper

Research on Effect of Wastegate Diameter on Turbocharged Gasoline Engine Perfor mance

2016-04-05
2016-01-1028
Boosting and downsizing is the trend of future gasoline engine technology. For the turbocharged engines, the actuation of intake boosting pressure is very important to the performance output. In this paper, a GT-Power simulation model is built based on a 1.5 L turbocharged gasoline engine as the research object. The accuracy of model has been verified through the bench test data. Then it is conducted with numerical simulation to analyze the effect of wastegate diameter on the engine performance, including power output and fuel economy. Mainly the wastegate diameter is optimized under full engine operating conditions. Finally an optimal MAP of wastegate diameter is drawn out through interpolation method. By the transmission relationship between wastegate and actuator, a wastegate control MAP for electric actuated wastegate can be obtained.
Technical Paper

In-Cycle Knocking Detection and Feedback Control Based on In-Cylinder Pressure and Ion Current Signal in a GDI Engine

2016-04-05
2016-01-0816
Due to much higher pressure and pressure rising rate, knocking is always of potential hazards causing damages in the engine and high NOX emissions. Therefore, the researchers have focused on knocking diagnosis and control for many years. However, there is still lack of fast response sensor detecting in-cycle knocking. Until now, the feedback control based on knocking sensor normally adjusts the injection and ignition parameters of the following cycles after knocking appears. Thus in-cycle knocking feedback control which requires a predictive combustion signal is still hard to see. Ion current signal is feasible for real-time in-cylinder combustion detection, and can be employed for misfiring and knocking detection. Based on incylinder pressure and ion current signals, the in-cycle knocking feedback control is investigated in this research. The 2nd-order differential of in-cylinder pressure, which means the response time of pressure rising rate dPR, is employed for knocking prediction.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Technical Paper

Optimal Design of Vehicle Dash and Floor Sound Package Based on Statistical Energy Analysis

2015-04-14
2015-01-0661
An increasing demand for vehicle noise control has been proposed and at the same time, vehicle weight and fuel economy have become critical for the automotive industry. The methodology of statistical energy analysis (SEA) is used to balance both light weight and high noise insulation performance. In this paper, the vehicle dash and floor sound package systems, which are two of the major paths for vehicle interior noise, are studied and optimized by CAE and testing technology. Two types of sound packages which are the conventional insulation system and the lightweight one are chosen for the vehicle dash and floor system. The vehicle dash and floor systems are modeled by SEA and the transmission loss (TL) of the dash and floor system is analyzed, respectively. Several influence factors of the TL are also analyzed, such as sound package coverage, the leaks, etc.
Technical Paper

Gasoline Engine Turbocharger Matching Based on Vehicle Performance Requirements

2015-04-14
2015-01-1283
Turbocharger is an important method to improve fuel economy of internal combustion engines. Traditional turbocharger matching methods show their limitations that only consider the matching between turbocharger and engine under the single designed operating point. This paper is to study the turbocharger matching based on vehicle performance requirements, in which performance requirements among vehicle, engine and turbocharger system are fully considered. The study is based on a vehicle which is equipped with 1.5L Chinese produced engine. Vehicle powertrain and gasoline engine simulation models were built in one-dimensional simulation software and verified by experiments. According to the vehicle performance, to study the matching under multiple working conditions, new European drive cycle (NEDC), full-load condition and high altitude condition, the matching of four kinds of turbochargers with a gasoline engine were compared respectively.
Technical Paper

Fuel Economy and Emissions of a 7L Common Rail Diesel Engine during Torque Rise Transient Process

2015-04-14
2015-01-1068
Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle

2013-04-08
2013-01-1744
In vehicle application, most of time gasoline engines are part load operated, especially in city traffic, part load operation covers most common operation situations, however part load performances deteriorate due to pumping losses and low thermal efficiency. Many different technologies have been applied to improve part load performances. One of them is to adopt over-expanded (Atkinson/Miller) cycle, which uses late/early intake valve closing (LIVC/EIVC) to reduce pumping losses in part load operation. But over-expanded cycle has an intrinsic drawback in that combustion performance deteriorates due to the decline in the effective compression ratio (CR). Combining with high geometry CR may be an ideal solution, however there is a trade-off between maintaining a high CR for good part load fuel consumption and maintaining optimal combustion phasing at higher load.
Technical Paper

Multidisciplinary Design Optimization of a Hatchback Structure

2012-04-16
2012-01-0780
Lightweight automobile has an important role in saving the energy, improving the fuel economy and reducing the exhaust emission. However, reducing the mass of the automobile need to meet the structural and NVH (Noise, Vibration and Harshness) performance requirements. With the rapid development of Computer Aided Engineering (CAE) technology, more and more people tend to research the complex engineering application problem by computer simulation. An important challenge in today's simulation is the Multidisciplinary Design Optimization (MDO) of an automobile, including mass, stiffness and modal etc. This paper presents a MDO study in a minicar hatchback.
Technical Paper

Fuel Injection Optimization during Engine Quick Start by Means of Cycle-by-Cycle Control Strategy for HEV Application

2009-11-02
2009-01-2718
Engine-off strategy are popular used in hybrid electric vehicles (HEV) for fuel saving. The engine of an HEV will start and stop frequently according to the road condition. In order to obtain excellent fuel economy and emissions performance, the fuel injection during engine quick start should be optimized. In this paper, the characteristic of mixture formation and the HC emissions at the first 5 cycles which contribute the most HCs were investigated. After the analysis of mixture preparation during start process, the HC emissions during engine quick start were optimized by means of cycle-by-cycle fuel injection control strategy. The fuel mixture concentration during start-up process fluctuates more dramatically under hot start condition. Typically, the mixture at 4th and 5th cycle is over-riched. Based on the original engine calibration, the fuel injection at the initial 5 cycles was optimized respectively.
Technical Paper

Design and Simulation of Serial Hybrid Electric Moped Powertrain

2008-06-23
2008-01-1567
According to the requirements of two-wheel vehicle's future market and the characteristic of urban road conditions in China, the advantages and disadvantages of three basic configurations for the Hybrid Electric Vehicle are compared, finally, the serial hybrid configuration is chosen to be applied to hybrid Electric Moped solution. The selection principle of main components of this hybrid powertrain system includes ICE, generator, battery and hub motor, and the optimal match for performance parameters of these components are introduced in this paper. Then, a hybrid system model is established based on AVL-CRUISE. The simulations of fuel efficiency and exhaust emissions for both serial hybrid moped and conventional motorcycle is offered.
Technical Paper

Elementary Investigation into Road Simulation Experiment of Powertrain and Components of Fuel Cell Passenger Car

2008-06-23
2008-01-1585
It is very important to investigate how road irregularity excitation will affect the durability, reliability, and performance degradation of fuel cell vehicle powertrain and its key components, including the electric motor, power control unit, power battery package and fuel cell engine system. There are very few published literatures in this research area. In this paper, an elementary but integrated experimental work is described, including the real road load sample on proving ground, road load reproduction on vibration test rig, total vehicle road simulation test and key components vibration tests. Remote parameter control technology is adopted to reproduce the real road load on road simulator and six-degree-of-freedom vibration table, which is used respectively for total vehicle and components vibration tests.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

2008-06-23
2008-01-1566
In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
X